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ABSTRACT 
 

 Analyses of applied military data is often complex 
for two reasons.  First, many performance and health 
variables of interest are non-normally distributed.  
Second, data typically have a complex nested or partially 
crossed structure.  Recent advances in applied statistics 
make it possible to address both complexities within a 
single unified statistical framework. 
 

1.  INTRODUCTION 
 
 Many performance and health variables of interest to 
commanders, policy makers and researchers are non-
normally distributed.  For instance, retention, depression 
and some forms of performance are dichotomous – a 
Soldier stays or leaves active duty; is or is not depressed; 
and succeeds or fails on a specific task.  Other outcomes 
have a Poisson distribution.  Reports of traumatic stress 
symptoms, for example, typically have the majority of 
respondents endorsing few or no symptoms with 
symptomatic individuals producing a positive skew (see 
Figure 1).  Data with these characteristics obviously 
violate the assumption of normally distributed data 
underlying many statistical techniques. 
 

Figure 1:  Histogram of Traumatic Stress Symptoms
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1.1 Generalized Linear Models 
 
 Statistical models to address non-normally 
distributed data are well-developed.  A class of models 
called Generalized Linear Models or GLMs provide a 
common framework for analyzing a range of normally 
and non-normally distributed data.  These are described 
in detail by McCullagh and Nelder (1989) among others.  
GLMs are implemented in a variety of statistical 
packages to include the open-source language R (R 
Development Core Team, 2006). 
 
 While somewhat oversimplified, users specify the 
appropriate family from which the outcome is assumed 
to have been drawn (binomial, Poisson, normal).  In turn, 
the GLM programs use appropriate corresponding link 
functions (logit, log, identity) and estimate the model.  
Model parameters, standard error estimates, and 
significance values are thereby based on appropriate 
underlying distribution assumptions. 
 
 GLM programs are highly flexible; however, one of 
their underlying assumptions is the supposition that 
observations are independent.  This assumption leads to 
an expectation that any residual errors in the model will 
also be independent.  If non-independence is suspected, 
it is generally included as a fixed (non-random) predictor 
in the model. 
 
 For military analysts, the assumption of 
independence and/or the need to model non-
independence as a fixed-effect potentially represent a 
fairly substantial limitation.  This is because military data 
often contain non-independence due to either unit 
membership or repeated measures. 
 
1.2  Mixed-Effects Models 
 
 Non-independence due to groups is pervasive in 
military data because unit (Battalion, Company, Platoon, 
Squad) membership often influences Soldier-level data 
(Bliese, 2006).  That is, Soldiers’ responses are partially 
a function of the group to which the Soldier belongs.  If 
non-independent data are treated as being independent, 
one runs the risk of biasing standard errors and reaching 
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incorrect conclusions about what is and is not significant 
(Bryk & Raudenbush, 1992; Bliese & Hanges, 2004). 
 
 In GLM models, the impact of the non-independent 
data structure can be partially controlled and modeled by 
including fixed effects for group membership in the form 
of N-1 dummy codes where N represents the number of 
groups.  Statistically, however, using dummy codes is 
less than optimal for three reasons.  First, the use of 
dummy codes is “expensive” in terms of degrees of 
freedom particularly when group sizes are small and 
there are a lot of groups relative to the total sample size.  
Second, the use and interpretation of dummy codes is 
most useful in cases where designs are balanced (i.e., 
equal group sizes).  In practice, though, group sizes often 
vary considerably either because certain groups are 
larger than others (HHC company versus Armor 
company) or because the number of Soldiers 
representing the unit vary. 
 
 The third reason dummy codes are a less than 
optimal solution is that on theoretical grounds the 
specific groups in the sample are often considered to be 
randomly drawn from a larger population of groups.  As 
such, one is rarely interested in making inferences about 
any specific group (e.g., Alpha company).  Representing 
groups as N-1 dummy codes, however, treats groups as 
fixed effects and thereby results in a fixed-effect estimate 
for each group. 
 
 Mixed effects models (also referred to as random 
effects models) provide a way to control for non-
independence.  The approach uses few degrees of 
freedom; easily handles non-balanced designs (i.e., 
unequal group sizes), and is congruent with the idea that 
the groups in the sample reflect a random draw from a 
larger population of groups (Bryk & Raudenbush, 1992; 
Pinheiro & Bates, 2000). 
 
 In addition to efficiently handling non-
independence, mixed-effects models also provide a way 
to extend the substantive understanding of the models by 
including (a) predictors of group differences and (b) 
predictors that explain why individual-level relationships 
vary across groups. 
 
 With respect to variability in individual-level 
relationships, Figure 2, for instance, shows that the 
relationship between Soldier reports of direct combat 
exposure and reports of anger-related behaviors is 
positive (anger increases as reports of combat exposure 
increase).  Across the 20 groups plotted in the figure, 
however, the strength of the relationship appears to vary.  
Mixed effect models provide a way to formally test 
whether the slope variation is reliable or whether it 
represents random variability.  If the slope differences 
are reliable, the models provide a way to add group-level 

predictors as explanatory variables.  Group-level 
variables in this situation often refer to some aspect of 
social context (Bliese, 2006). 
 

Figure 2:  Combat and Anger by Unit
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 Mixed-effects models are also useful in cases where 
individuals provide repeated measures over time.  In 
longitudinal studies the individual is analogous to the 
group, and the repeated measures are analogous to 
individual observations within the group.  The inclusion 
of time adds some additional complexity (Bliese & 
Ployhart, 2002; Pinhiero & Bates, 2000); however, the 
heuristic of considering repeated measures from 
individuals to be equivalent to measures from multiple 
individuals in groups is helpful nonetheless. 
 
 The major limitation with mixed-effects models is 
that they have been primarily developed for the analysis 
of normally distributed outcome data (Pinheiro & Bates, 
2000).  Thus, despite their appeal, they have been 
somewhat limited in terms of their applicability in 
applied military settings where outcomes are in many 
cases not normally distributed. 
 

2.  GLMM MODELS 
 
 In 2003, the US Army Medical and Material 
Command (USAMRMC) used the Small Business 
Technology Transfer Program (STTR) program to 
explore the possibility of developing new computation 
methods to facilitate merging the areas of GLM and 
Mixed-Effects Models – an area referred to as 
Generalized Linear Mixed effects Models or GLMMs. 
 
 A phase II STTR award was granted to TOYON 
Research Corporation and the University of Wisconsin.  



Dr. Douglas Bates from the Department of Statistics at 
the University of Wisconsin led the development of 
computational methods. 
 
 The original focus of the STTR centered on 
improving algorithms for estimating statistical 
parameters in cases where GLMMs were applied to 
dichotomous data.  In 2003, algorithms to analyze 
dichotomous data within a mixed-effects framework 
existed, but there were questions about the accuracy of 
the parameter estimates and standard errors from these 
algorithms (Rodriguez & Goldman, 2001).  Thus, the 
initial focus of the STTR was to investigate the 
feasibility of incorporating new algorithms to improve 
the accuracy of model estimation. 
 
 Two promising options included algorithms based 
on Laplace and Adaptive Quadrature estimation.  The 
initial work focused on how these computationally 
demanding algorithms could practically be incorporated 
onto an existing software platform for PCs.  That is, 
while these alternative methods seemed mathematically 
feasible, the practical challenge of implementing them on 
a PC-based software platform to test their performance 
was challenging. 
 
 In 2004, while working on ways to implement 
efficient algorithms into the open source platform R, the 
researchers observed that the challenges associated with 
estimating model parameters in GLMMs shared 
similarities with sparse matrix estimation problems.  
Based on this observation, the researchers began to 
explore whether the potential computational advantages 
of approaching the estimation as a sparse matrix problem 
could be applied to GLMMs.  The sparse matrix 
estimation approach turned out to be highly feasible and 
represented a novel computation solution. 
 
 In 2004 and 2005, the STTR team implemented the 
solution into the open-source statistical platform, R (R 
Development Core Team, 2006) as part of the lme4 
package.  By 2006, the lme4 package had received 
extensive testing from a host of R users with a variety of 
different analytic problems. 
 
 In addition to providing a platform for estimating 
GLMMs on PCs, the STTR produced at least one 
unexpected, but highly valuable by-product.  Namely, 
the group working on the STTR discovered that when 
GLMM models were estimated using sparse matrix 
estimation approaches, the flexibility of the models for 
handling nested, fully crossed and partially crossed 
designs greatly increased. 
 
 This finding was important because mixed-effects 
models are generally optimized to handle completely 
nested designs.  For instance, the original mixed-effects 

models in R (Pinheiro and Bates, 2000) are designed to 
handle multiple levels of nesting (squad nested in 
platoon nested in company nested in battalion).  In this 
fully nested design, all members of a single lower-level 
group are also members of the same higher-level 
hierarchical group.  For instance, all platoon members in 
a specific platoon are also members of the same 
company and the same battalion. 
 
 In fully nested designs, the mixed-effects models 
provide separate variance estimates for each level.  In 
this way, one might observe, for example, that most of 
the group-level variance surrounding reports of anger can 
be attributed to the platoon level.  The ability to parse 
variance into separate hierarchical levels is useful for 
understanding what types of variables relate to a various 
outcomes – finding large variance differences at the 
platoon-level suggests platoon-level variables impact the 
specific outcome. 
 
 In practice, however, military data is not always 
cleanly nested.  The lack of full nesting occurs when 
subordinate units are task organized under other units.  
Task organization leads to situations where two different 
platoons in the same company may consider themselves 
to be from two different battalions. 
 
 Another situation where partial crossing is common 
is in longitudinal studies where one is modeling repeated 
measures nested within individuals and individuals are 
nested within groups, but during the course of the study 
the individuals un-uniformly change groups.  This can 
easily happen in military research, and is also common in 
educational research where students change classrooms 
and schools over time, but where different students go to 
different classrooms and different schools. 
 
 For traditional mixed-effects models, these partially 
crossed situations make it virtually impossible to obtain 
unique variance estimates for each level of the design.  If 
the models are estimated using the sparse matrix 
approach underlying lme4, however, partially crossed 
designs pose no problem. 
 

3.  PRACTICAL EXAMPLES 
 
 While the lme4 package still continues to be refined, 
its use can be illustrated in several examples. 
 
3.1  Variance Decomposition 
 
 For a practical example of the utility of the lme4 
approach in variance decomposition, consider a recent 
randomized controlled trial (RCT) conducted at the US 
Army Medical Research Unit – Europe (USAMRU-E).  
In the RCT, platoons were randomly assigned to one of 



three conditions, and the conditions were indexed by 
session number. 
 
 In an ideal situation, platoon membership should 
have been completely overlapping with session number.  
That is, individuals would have been members of one 
and only one platoon; every platoon member would have 
been in the same session, and every member of a platoon 
and session would have been a member of the same 
company. 
 
 In practice, however, individual platoon members 
were occasionally split so that some members ended up 
in one session while other members ended up in other 
sessions.  In addition, because of actual work 
characteristics and the desire to keep intact workgroups 
together, sessions had the potential to be composed of 
individuals who were technically in different platoons 
(e.g., HHC units). 
 
 Because pre-existing group differences could bias 
the results of the RCT, it was necessary to control for 
these group differences.  It was not clear, however, 
whether the lowest level should have been controlled by 
indexing session or platoon.  In traditional mixed-effects 
models, the partial crossing would have made a variance 
decomposition of the separate effects for session versus 
platoon impossible.  In lme4, however, it was possible to 
estimate variance effects for platoon, session and 
company and use the results of the variance estimates to 
control for the grouping which accounted for the most 
variance. 
 
3.2  Combat and Adjustment 
 
 A second example of where the lme4 algorithms are 
being applied is in large studies of US Army Soldiers 
returning from Iraq.  One of the questions in these data 
centers on the degree to which reports of specific combat 
experiences relate to reports of adjustment problems 
(traumatic stress, depression, alcohol use, etc.). 
 
 Many of the adjustment issues such as traumatic 
stress and depression can be measured both in terms of 
symptom severity (usually a Poisson distribution) and 
whether or not a score meets or exceeds cut-off criteria 
(binomial). 
 
 The GLMM routines in lme4 provide a way to 
determine whether social context in the military plays a 
role in how reports of specific combat experiences relate 
to adjustment problems.  For instance, if there is unit-by-
unit variability in the strength of the relationship between 
seeing dead or dying combatants and showing symptoms 
of traumatic stress, it suggests that unit level factors may 
ameliorate the effects of this combat experience.  This, in 
turn, may provide suggestions for early interventions.  A 

detailed discussion of the role of unit-level factors in 
non-combat situations can be found in Bliese and Jex 
(2002), but this work suggests the importance of the role 
social context in combat situations. 
 
3.3   Sleep and Performance 
 
 Studies of individual performance under conditions 
of sleep restriction and sleep deprivation reveal 
consistent and reliable individual differences in 
vulnerability to the effects of sleep deprivation (Bliese, 
Wesensten, & Balkin, in press; Van Dongen, Maislin, 
Mullington, & Dinges, 2003).  One of the potentially 
fruitful areas for future research is to identify individual 
factors that predict vulnerability to sleep loss. 
 
 Both Bliese et al. (in press) and Van Dongen et al. 
(2003) used mixed effects models to investigate 
individual differences.  In both cases the psychomotor 
vigilance task was used in longitudinal experiments; 
however, in both cases the modeling of the variable 
relied on outcome summaries of task performance.  
Specifically, Bliese et al. (in press) used average reaction 
time across day excluding lapses, while Van Dongen et 
al. (2003) analyzed a sum of lapses averaged across days.  
In both cases, this was done to create an outcome with 
normal distribution properties.   
 
 Advances in GLMMs make it possible to model 
specific trial performance on binomial tasks and other 
tasks which may not provide normally distributed 
outcomes.  This, in turn, may facilitate the ability to 
examine trial-by-trail performance. 
 

4.  CONCLUSIONS 
 
 Innovations in GLMMs and the availability of the 
lme4 program in the open-source language R (R 
Development Core Team, 2006) open the possibility of 
analyzing a wide-range of military data for informing 
policy decisions and for advancing scientific knowledge.  
The merge of GLM models and mixed-effects models 
provide a set of statistical techniques that are specifically 
designed to address the complex nature of military data. 
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